header

Theory of History-Dependent Multi-Layer Generalized Stacking Fault Energy: A Modeling of the Micro-Substructure Evolution Kinetics in Chemically Ordered Medium-Entropy Alloys

51 Pages Posted: 1 Jul 2021 Publication Status: Published

See all articles by Peijun Yu

Peijun Yu

Osaka University - Department of Mechanical Science and Bioengineering

Jun-Ping Du

Osaka University - Department of Mechanical Science and Bioengineering

Shuhei Shinzato

Osaka University - Department of Mechanical Science and Bioengineering

Fanshun Meng

Osaka University - Department of Mechanical Science and Bioengineering

Shigenobu Ogata

Osaka University - Department of Mechanical Science and Bioengineering; Kyoto University - Center for Elements Strategy Initiative for Structural Materials (ESISM)

Abstract

In this study, a chemical order related concept “history-dependent multi-layer generalized stacking fault energy” (HDML-GSFE) was proposed, and it was then demonstrated by employing the recent, very interesting multi-principal element alloy (CoCrNi medium-entropy alloys; MEA) with different chemical short-range order (CSRO) levels using a density functional theory (DFT)-based neural network interatomic potential. To demonstrate the impacts of the history dependency and interlayer (atomic interlayers of the slip system) coupling effect on the GSFE of CSRO MEAs, HDML-GSFEs were computed for different shear deformation pathways of the MEAs with different CSRO levels, such as interlayer multiple-time slipping, twin growth, and γ - ε (FCC- HCP) phase transformation. It was demonstrated that multiple-time slipping induces CSRO collapse, leading to local shear softening due to the history dependency of GSFE. In addition, it was found that the slipping of neighboring atomic interlayers is affected by the slipping resulting from the induced CSRO collapse of present interlayers because of the interlayer coupling effect of GSFE. Eventually, by employing a novel kinetic Monte Carlo (kMC) simulation method based on dislocation/disconnection loop nucleation events and using the HDML-GSFE with the history dependency and interlayer coupling effect, we proposed a laminated micro-substructure evolution that involves twinning and γ - ε phase transformations subject to a finite shear strain rate and finite temperature.

Keywords: Generalized stacking fault energy; History dependency; Chemical short-range order; Neural network potential; Kinetic Monte Carlo; Density functional theory; Multi-principal element alloys

Suggested Citation

Yu, Peijun and Du, Jun-Ping and Shinzato, Shuhei and Meng, Fanshun and Ogata, Shigenobu, Theory of History-Dependent Multi-Layer Generalized Stacking Fault Energy: A Modeling of the Micro-Substructure Evolution Kinetics in Chemically Ordered Medium-Entropy Alloys. Available at SSRN: https://ssrn.com/abstract=3878351 or http://dx.doi.org/10.2139/ssrn.3878351

Peijun Yu (Contact Author)

Osaka University - Department of Mechanical Science and Bioengineering ( email )

Osaka
Japan

Jun-Ping Du

Osaka University - Department of Mechanical Science and Bioengineering ( email )

Shuhei Shinzato

Osaka University - Department of Mechanical Science and Bioengineering ( email )

Osaka
Japan

Fanshun Meng

Osaka University - Department of Mechanical Science and Bioengineering ( email )

Osaka
Japan

Shigenobu Ogata

Osaka University - Department of Mechanical Science and Bioengineering ( email )

Osaka
Japan

Kyoto University - Center for Elements Strategy Initiative for Structural Materials (ESISM) ( email )

Kyoto
Japan

Do you have negative results from your research you’d like to share?

Paper statistics

Downloads
46
Abstract Views
235
PlumX Metrics